

□ The Maths policy aims at making the progression of learning explicit for each of the four mathematical operations.

□ In order to access content related to early numeracy skills preceding conceptual understanding of these operations, please refer to the Non-Subject Specific curriculum (see section 'Early Mathematical Skills', in which you will find number, object, shape, measure and time), The Curriculum ladders steps 1-6 are all predominantly pre-operation as well (number and geometry & measure).

□ All four operations should be reinforced by making links to maths in real life contexts. For all of them please use the CPA approach (concrete – pictorial – abstract) to facilitate understanding and development.

□ Opportunities for cross-curricular or informal mathematics should be sought and utilised, in order to encourage an understanding of the value of mathematics and to reinforce learning. For example, measuring (capacity/weight) can be practised in Food Tech, counting can be exercised whilst gardening etc.

□ In order for this progression to run smoothly, vocabulary, mental calculation strategies and rapid recall facts should be introduced at the appropriate stage, used in context, and reinforced regularly. Interpretation of written signs / symbols also needs to be explicitly taught.

□ It is essential that students are taught according to the stage that they are currently working at, only being moved onto the next stage once they show conceptual understanding and are secure enough to progress.

□ Once students have progressed to written methods of calculation, this policy shows what 'carrying the one', as an example, should look like on paper. This way all students will be taught the same method across the school, making it easier to transition between classes.

 \square For addition see pages 2-5.

 \square For subtraction see pages 6-9.

□ For multiplication see pages 10-12.

 \square For division see pages 13-14.

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to', 'is the same as'

addition

Strategies	Steps 1-6	Steps 7-9	Steps 10-13
Counting objects	Number songs with actions or objects to count / add Counting on fingers consistently Matching numbers to objects		
Counting on	Count on, altogether, one more etc 1 more / 2 more with pictures and numbers Using Numicon 4 + 1 = 5	Using number sentences and mathematical language - count on / altogether / one more/ two more Counting in 2s, 5s and 10s	Counting on in 2s, 5s and 10s from different numbers e.g. 3, 9, 16, within 100.
Number stories	Illustrating number stories with number sentences There are 3 cars in the garage. 1 more came along 3 1 = 4 Terry has 3 apples and Tony has 2 apples. How many altogether? + • • • •	Embedding number stories into word problems.	

Using a	Counting on using number lines and cubes or	Using number lines within 10, drawing jumps on	
number	Numicon:	prepared lines:	
line		6+3=9 <	
Addition	Money – using Numicon to help recognition value	Money and addition up to 20p	Addition of money up to £1 – using coins
with	of coins and simple addition e.g. 5p + 2p		
money		000	
Related		Relationships / related facts	Deriving related facts
addition		□ = 5 + 4	13 + 7 = 20
facts			7 + 13 = 20 (and link to subtraction)
		5 + 4 = 🗌	20 - 7 = 13
		5 + 🗌 = 9	20 - 13 = 7
		□ + 4 = 9	
		□+□ = 9	

Using number bonds	Beginning to work on number bonds to 10.	Number bonds to 10 (Numicon, Numicon overlays) Regrouping to make 10 using ten frames and counters / cubes, Base 10 or Numicon.	Number bonds to 20
Addition using partitionin g		Partitioning 14 = 10 + 4 (Numicon / Base 10) Part / whole model – separating a number of objects into 2 groups within 10 e.g. 8 is 5 and 3.	Use Base 10 to help partitioning 61 + 14 = 60 + 10 = 70 1 + 4 = 5 70 + 5 = 75 Partitioning into tens and ones and using number lines e.g. 27+30 = 57 27 + 30 +10 +10 +10 16 + 7 +4 +3 27 37 47 57 16 20 23

	Step 14				Steps 15-16	
1. No 'exchanging' 2.	Extra digit in answer 3. Extra digit in answer	changing O to T	4. Exchangin	g T to H 5. Ех	changing O to T and T to H	6. Different no. of digits
+ <u>42</u> + <u>624</u> + <u>73</u>	HTO ₁ TOHTO 56147237 <u>+ 718</u> + <u>25</u> + <u>516</u> 127972753	i.	HTO ¹ 371 + <u>485</u> 856	HTO ^{1 1} 376 + <u>485</u> 861	HTO 11 24 + <u>388</u> 412	
 Emphasise value of digit Continue to use number I 	e.g. 2 tens and 3 ones lines / partitioning method us	ng Base 10.	Money and I 1. £3.25 ¹ 2.	£4.21	¹ 1 3. £1.85	10
	41 + 8 = 49				+ 48p (written vertically) + <u>0</u>	.48
concrete	pictorial	abstract	£4.78 £8	3.08	£ <u>2.33</u>	
	<u>10s 1s</u> 1111 4 9	+ 4 1 + 8 4 9	cor	o use partitioni	ng method using Base 10 / pla 243 + 368 = 611 $pictorial$ $100s$ $10s$ $1s$ 00 pop	ace value counters. abstract HTO 1 1
	36 + 25 = 61		••• • §			243
concrete	pictorial	abstract			000 0000 0000	
10s 1s		TO ¹ 36 + <u>25</u> 61	6	1	6 1 1	+ <u>368</u> 611

Key language	: take away, less than, the difference, subtract, minus, fev	wer, decrease	subtraction
Strategies	Step 7	Step 8	Step 9
Subtraction using songs, pictures and real objects	Songs such as '5 little ducks went swimming one day' or '10 green bottles' using objects		
	e.g. 1 less than 5 (remove 1 duck) 1 less, 2 less with pictures and numbers. We made 6 cakes. We ate 2 of them. How many cakes are left?		
	Using Numicon by physically removing objects from the shapes (cubes, beanbags and other items could be used as well) $ \bigcirc \bigcirc \bigcirc \longrightarrow \bigcirc \bigcirc$		
Subtracting multiples			Subtracting multiples of 10 using Numicon or Base 10 e.g. $50 - 20 = 30$

Counting back	Counting back through practical activities in meaningful contexts Link to number line $6 - 2 =$ 0 1 2 3 4 5 6	Drawing jumps on prepared lines 11 - 7 = 4 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 12 + 12 + 12 + 12 + 12	Counting back by partitioning when numbers not close together within 50. e.g. $46 - 18 = 28$
Finding the difference	The difference between 2 and 4	Finding the difference within 20, e.g. the difference between 7 and 11 using cubes / Numicon Using cubes or Cuisenaire rods on number track to calculate the difference, e.g. between 8 and 5 Finding the difference by counting up when difference is small, e.g. $11 - 5 = 7$	

Related	Beginning to understand inverse of number bonds to	Consolidating inverse of number bonds to 10:	Inverse bonds to 20 e.g. $20 - 18 = 2$
subtraction	10. E.g. 10 – 8 = 2	10 - 3 = 7 $10 - 7 = 3$	
facts			
		Relationships / related	
		facto	
		5-2-0 0-5-2	
		5 - 🗆 = 3 3 = 🗖 - 2	
		□ - 2 = 3 3 = 5 - □	
		Using ten frames e.g. 14 – 5	
		Comig torr manifectory. The C	

Steps 11-13			Steps 14-16	
1. No exchanging 2. Exchanging T and O 3. Exchanged	ing H and T	4. Exchanging H to T and T to	O 5. Noughts	
FO HTO TO HTO 47 864 ${}^{4}5^{1}1$ ${}^{2}3$ ${}^{3}3$ 23 $- \underline{621}$ $- \underline{36}$ $- \underline{182}$ 24 243 15 15		H T O ³ #/17/3 12 - <u>1 8 7</u> 2 4 5	H T O H 4 %7'10 %7' - <u>1 4 2 - 4</u> 3 2 8 2	TO H T O 9/0 ¹ 0 ⁵ /6 ⁹ /0 ¹ 4 <u>85</u> - <u>347</u> 15 257
Emphasise value of digit e.g. 4 tens and 7 ones Continue to use number lines / partitioning method using	g Base 10.	Money and Decimals 1. £4.35 2. £5. ³ 4 ⁴ - £1.23 - £2.2	5 3. £²3,∕50 9 - €173	
48 – 7 = 41 concrete pictorial	abstract	£3.12 £3.1	9 - £ <u>1.73</u> 6 £1.86	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48 - <u>7</u> 41	60 0000	234 - 88 = 146 pictorial 00s 10s 1s 000 0000 788	$2^2 3^4$
41 - 26 = 15 $10s 1s$ $10s 1s$ $10s 1s$ $10s 1s$ $1 + 10$ $1 + 1$	$ \begin{array}{c} abstract \\ - 344 \\ - 26 \\ - 5 \end{array} $	100s 10s 1s Image: state states	1 4 6	<u>- 88</u> 6

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups

multiplication

Strategies	Steps 7-8	Steps 9-10	Step 11
Doubles	Doubles up to 5 + 5	Doubles up to 10 + 10 (UseNumicon) 7 + 7 = 14	Doubles of all numbers up to 20 by partitioning and recombining, using Numicon or Base 10 17 + 17 = 34 10 + 10 7 + 7
Knowledg e of times tables	Counting in 2s and 10s (Extend to 5's)	Counting in 2s, 5s to 50 and 10s to 100 Using 100 Square up to 20 to count in 2s, 5s and 10s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Knowing the times tables facts for 2, 5 and 10
Repeated addition	Using Numicon or Cuisenaire rods on number track	Using number lines	Linking to repeated addition 2 + 2 + 2 + 2 (4 groups of 2) 0 + 2 + 2 + 2 + 2 (4 groups of 2) 4 + 4 (2 groups of 4) 0 + 2 + 4 + 4 (2 groups of 4) 0 + 2 + 2 + 2 + 2 + 2 (4 groups of 2) 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +

Arrays	Grouping objects in twos or threes, then adding groups of the same number $2 + 2 + 2$	Using arrays to illustrate commutativity, counters and cubes can also be used – concrete / pictorial / abstract	Understanding multiplication as repeated addition / groups / lots.
		2 lots of 5 10=2x5 5x2=10 2+2+2+2=10 10=5+5	Reading arrays
In context	In context: how many wheels do we need to make three Noddy cars? 5 + 5 + 5 = 15	There are 2 sweets in one cup. How many sweets are there in 5 cups?	

□ Knowing the times tables	facts for 3, 4 and 8	
□ Partition to multiply using	Numicon, Base 10 or Cuis	enaire rods on number track
	4 x 15 = 60	
concrete	pictorial	abstract
		4×15 10 5 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60

Steps 12-13

□ Column method with no carrying, using Numicon or place value counters

con	crete	pictorial		abstract	
10s	1s	10s	ls	3×23	$3 \times 20 = 60$ $3 \times 3 = 9$
00	000	00	000	20 3	60 + 9 = 69
88	000	00	000	23	
		00	000	<u>× 3</u>	
6	9	6	9	69	

Steps 14-16					
\Box Knowing the times tables facts up to 12 x 12, including multiplying by 0 and 1					
1. No carrying	2. Extra digit	3. Carrying	4. Zeros		
, , , , , , , , , , , , , , , , , , , ,		51 5 7 5			
то	нто	НТО	НТО		
32	5 1	38	202		
x <u>3</u>	x <u>2</u>	x <u>7</u>	x <u>4</u>		
<u>96</u>	<u>102</u>	<u>266</u>	<u>808</u>		
		5			

□ Continuing to use place value counters and concrete / pictorial / abstract approach.

Key language: share, group, equal groups, divide, divided by, half

division

Strategies	Steps 7-9	Steps 10-12	Steps 13-16
Division as sharing	Division as sharing equally Sharing 6 cupcakes between 2 people Sharing a bag of 10 sweets between 2 children (one for you, one for me), emphasising the importance of sharing equally	Halving even numbers up to 10 using e.g. multilink cubes Understanding 8 ÷ 2 as half of 8	Halving even numbers up to 20 Halving multiples of 10 up to 100
Division as grouping	Division as grouping 10 sweets grouped into 2s. How many groups? Where the second	Division as groupin: 2s, 5s and 10s 15 children get into teams of 5 to play a game. How many teams are there?	Recording using ÷ and = signs Recognising relationship between x and ÷ Knowing related division facts for 2, 5 and 10 tables Using number lines or Cuisenaire rods on number track / above ruler 20 ÷ 2 = 10 (counting in 2s)

