Maths Policy

\square The Maths policy aims at making the progression of learning explicit for each of the four mathematical operations.

- In order to access content related to early numeracy skills preceding conceptual understanding of these operations, please refer to the Non-Subject Specific curriculum (see section 'Early Mathematical Skills', in which you will find number, object, shape, measure and time), The Curriculum ladders steps 1-6 are all predominantly preoperation as well (number and geometry \& measure).
\square All four operations should be reinforced by making links to maths in real life contexts. For all of them please use the CPA approach (concrete - pictorial - abstract) to facilitate understanding and development.
\square Opportunities for cross-curricular or informal mathematics should be sought and utilised, in order to encourage an understanding of the value of mathematics and to reinforce learning. For example, measuring (capacity/weight) can be practised in Food Tech, counting can be exercised whilst gardening etc.
\square In order for this progression to run smoothly, vocabulary, mental calculation strategies and rapid recall facts should be introduced at the appropriate stage, used in context, and reinforced regularly. Interpretation of written signs / symbols also needs to be explicitly taught.
\square It is essential that students are taught according to the stage that they are currently working at, only being moved onto the next stage once they show conceptual understanding and are secure enough to progress.
\square Once students have progressed to written methods of calculation, this policy shows what 'carrying the one', as an example, should look like on paper. This way all students will be taught the same method across the school, making it easier to transition between classes.
\square For addition see pages 2-5.
\square For subtraction see pages 6-9.
\square For multiplication see pages 10-12.
\square For division see pages 13-14.

Maths Policy

Strategies	Steps 1-6	Steps 7-9	Steps 10-13
Counting objects	Number songs with actions or objects to count / add Counting on fingers consistently Matching numbers to objects		
Counting on	Count on, altogether, one more etc 1 more / 2 more with pictures and numbers Using Numicon	Using number sentences and mathematical language - count on / altogether / one more/ two more Counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s	Counting on in 2s, 5 s and 10s from different numbers e.g. 3, 9, 16, within 100.
Number stories	Illustrating number stories with number sentences There are 3 cars in the garage. 1 more came along Terry has 3 apples and Tony has 2 apples. How many altogether?	Embedding number stories into word problems.	

Maths Policy

Using a number line	Counting on using number lines and cubes or Numicon:	Using number lines within 10, drawing jumps on prepared lines:	
Addition with money	Money - using Numicon to help recognition value of coins and simple addition e.g. $5 p+2 p$	Money and addition up to 20p	Addition of money up to $£ 1$ - using coins
Related addition facts		Relationships / related facts $\begin{aligned} & \square=5+4 \\ & 5+4=\square \\ & 5+\square=9 \\ & \square+4=9 \\ & \square+\square=9 \end{aligned}$	$\begin{aligned} & \text { Deriving related facts } \\ & 13+7=20 \\ & 7+13=20 \text { (and link to subtraction) } \\ & 20-7=13 \\ & 20-13=7 \end{aligned}$

Maths Policy

Using number bonds	Beginning to work on number bonds to 10.	Number bonds to 10 (Numicon, Numicon overlays) Regrouping to make 10 using ten frames and counters / cubes, Base 10 or Numicon.	Number bonds to 20
Addition using partitionin g		Partitioning $14=10+4$ (Numicon / Base 10) Part / whole model - separating a number of objects into 2 groups within 10 e.g. 8 is 5 and 3.	Use Base 10 to help partitioning $\begin{gathered} 61+14=60+10=70 \\ 1+4=5 \\ 70+5=75 \end{gathered}$ Partitioning into tens and ones and using number lines $\text { e.g. } 27+30=57$

Maths Policy

Maths Policy

Key language	ake away, less than, the difference, subtract, minus,		subtraction
Strategies	Step 7	Step 8	Step 9
Subtraction using songs, pictures and real objects	Songs such as ' 5 little ducks went swimming one day...' or '10 green bottles' using objects e.g. 1 less than 5 (remove 1 duck) 1 less, 2 less with pictures and numbers. We made 6 cakes. We ate 2 of them. How many cakes are left? Using Numicon by physically removing objects from the shapes (cubes, beanbags and other items could be used as well)		
Subtracting multiples			Subtracting multiples of 10 using Numicon or Base 10 e.g. $50-20=30$

Maths Policy

Maths Policy

Related subtraction facts

Beginning to understand inverse of number bonds to 10．E．g． $10-8=2$

Consolidating inverse of number bonds to 10 ：
$10-3=7 \quad 10-7=3$

Relationships／related
5－2＝$\quad \square=5-2$
5－ロ＝3
$3=$
－-3
ロ－ロ＝3
$3=5-\square$ $3=\square$－

Using ten frames e．g． 14 － 5

Maths Policy

Steps 11-13

1. No exchanging 2. Exchanging T and O 3. Exchanging H and T

TO	HTO	TO	HTO
47	864	${ }^{4} 5^{1} 1$	${ }^{2} 3{ }^{1} 37$
$-\frac{23}{24}$	$\frac{-621}{243}$	$-\frac{36}{5}$	$-\frac{182}{55}$

\square Emphasise value of digit e.g. 4 tens and 7 ones
Continue to use number lines / partitioning method using Base 10 .

Steps 14-16

4. Exchanging H to T and T to O 5. Noughts

H T O	H TO	H TO	H T O
${ }^{3} \mathrm{H}^{12} / 3^{12}$	$4^{6 / 10} 0$	${ }^{67} 910{ }^{10}$	${ }^{56} 9 \%{ }^{914}$
- 187	-142	-485	- 347
245	328	215	257

Money and Decimals

1. $£ 4.35$

- $£ 1.23$

2. $£ 5{ }^{3}{ }^{3} / / 5$
-£2. 29
3. $£^{2} 315 \%$

- £1.73

$$
£ 1.86
$$

Continue to use partitioning method using Base 10 / place value counters.

Maths Policy

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups

multiplication

Strategies	Steps 7-8	Steps 9-10	Step 11
Doubles	Doubles up to $5+5$	Doubles up to $10+10$ (UseNumicon)	Doubles of all numbers up to 20 by partitioning and recombining, using Numicon or Base 10
Knowledg e of times tables	Counting in 2s and 10s (Extend to 5's)	Counting in 2s, 5 s to 50 and 10 s to 100 Using 100 Square up to 20 to count in $2 s, 5 s$ and 10 s	Knowing the times tables facts for 2, 5 and 10
Repeated addition	Using Numicon or Cuisenaire rods on number track	Using number lines	Linking to repeated addition

Maths Policy

Arrays	Grouping objects in twos or threes, then adding groups of the same number $2+2+2$	Using arrays to illustrate commutativity, counters and cubes can also be used - concrete / pictorial / abstract	Understanding multiplication as repeated addition / groups / lots. Reading arrays
In context	In context: how many wheels do we need to make three Noddy cars? $5+5+5=15$	There are 2 sweets in one cup. How many sweets are there in 5 cups?	

Maths Policy

Maths Policy

Key language: share, group, equal groups, divide, divided by, half			division
Strategies	Steps 7-9	Steps 10-12	Steps 13-16
Division as sharing	Division as sharing equally Sharing 6 cupcakes between 2 people Sharing a bag of 10 sweets between 2 children (one for you, one for me), emphasising the importance of sharing equally	Halving even numbers up to 10 using e.g. multilink cubes Understanding $8 \div 2$ as half of 8	Halving even numbers up to 20 Halving multiples of 10 up to 100
Division as grouping	Division as grouping 10 sweets grouped into 2 s . How many groups? How many pairs of socks are there in your drawer?	Division as groupin: 2s, 5 s and 10s 15 children get into teams of 5 to play a game. How many teams are there?	Recording using \div and $=$ signs Recognising relationship between x and \div Knowing related division facts for 2, 5 and 10 tables Using number lines or Cuisenaire rods on number track / above ruler $20 \div 2=10$ (counting in 2 s)

Maths Policy

SCHOO

